a2 United States Patent

Marks

US009304762B2

US 9,304,762 B2
Apr. §5,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)
(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

AUTOMATICALLY CUSTOMIZING A
COMPUTER-EXECUTABLE APPLICATION
AT RUNTIME

Applicant: Apple Inc., Cupertino, CA (US)

Inventor: Paul Marks, San Jose, CA (US)
Assignee: Apple Inc., Cupertino, CA (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/192,035

Filed: Feb. 27, 2014
Prior Publication Data
US 2014/0250428 Al Sep. 4, 2014

Related U.S. Application Data

Provisional application No. 61/771,737, filed on Mar.
1,2013.

Int. Cl1.

GO6F 9/44 (2006.01)

GO6F 11736 (2006.01)

GO6F 9/445 (2006.01)

U.S. CL

CPC GO6F 8/70 (2013.01); GO6F 9/44521

(2013.01); GO6F 11/3672 (2013.01)
Field of Classification Search

CPC GOGF 9/44521; GOGF 11/3688; GOGF
11/3692; GOGF 8/70; GOGF 11/3672
USPC i 717/124-133, 162-167

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,216,261 Bl 4/2001 Mitchell
7,194,744 B2* 3/2007 Srivastavaetal. 719/331
7,661,088 B2 2/2010 Burke
8,079,019 B2* 12/2011 Lindoetal.cccceone.. 717/129
8,677,332 B1* 3/2014 Hjelmstad etal. 717/140
2009/0024986 Al 1/2009 Meijer et al.
2009/0089779 Al 4/2009 Brengle et al.
2011/0167404 Al 7/2011 Liuet al.
2014/0053282 Al* 2/2014 Courtccovveveierevrnnene. 726/30
OTHER PUBLICATIONS

Daniel Vaughan, “Clog: Client Logging, Silverlight Edition”, 2009 ,
Code Project, retrieved from http://www.codeproject.com/Articles/
21407/Clog-Client-Logging-Silverlight-Edition , 15 pages.*
CodePlex Project Hosting for Open Source Software, “patterns &
practices: Prism—How to handle exceptions in a module? ”, 2012,
retrieved from, https://compositewpf.codeplex.com/discussions/
36371, 3 pages.™

* cited by examiner

Primary Examiner — Ted T Vo

(74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman LLP

(57) ABSTRACT

Disclosed is a method of automatically customizing a com-
puter executable application, such as a test automation har-
ness, based on currently installed modules. The functionality
of the application can be split in multiple modules. At runt-
ime, the application can automatically detect the presence or
absence of amodule. If amodule is available, it can automati-
cally be integrated with the application such that the func-
tionality, such as language-level features and constructs, pro-
vided by the module is active and/or exposed. If the module is
absent, the application can continue executing without the
functionality provided by the module.

21 Claims, 5 Drawing Sheets

500
BEGIN
502 Execute a computer
executable application

504 " Receive a request to load a
first module

508

A,

Add the first set of
functionalities to a set of
application functionalities

[

ls the first module
installed?

¥

L 510

Handle an exception

¥

512\

Continue executing
computer executable
application

514 Expose the set of application
functionalities
RETURN

US 9,304,762 B2

Sheet 1 of 5

Apr. 5,2016

U.S. Patent

sng

9gl
el

cel

A

\ 01 \ GOl
NVY |alneq ao1naq
abelolg ndino
\ K X
VAR v _ e .
09 19sdiy) | obpug |/
aoeB| < >
uopedIUNWWOoD A » wﬁwmmwﬁh_uo cal
gs1 Y 108 va
06} ~ 10S$800.1d ./o
st gL o4
Gl
oLl ~
10SS9001d |«—>| 9yoed T \oﬁ
uoIE2IINWIWOD
someq |/ sel
ndino
€ oW NvY NOY | | Aowsy
ao1ne(] avl
¢ AOW \ \ \ indu \
Gcl ocl GLL
I AOW
. /oo—
90IA8(J V%I ‘Old
abeio1g

oct

US 9,304,762 B2

Sheet 2 of 5

Apr. 5,2016

U.S. Patent

¢ 9l

Solljeuonoun |
N SINPOW 10 189S

N 9[NPo\

Saljijeuonoun4
¢ 9INPOA J0 183

2 9INPON

SaijijrUOnOUN 4
| SjNPOIA JO 198G

saljijeuonoun4
uoneoyddy
J0 198 2100

uoneoyddy 8109

} S|NPOW

US 9,304,762 B2

Sheet 3 of 5

Apr. 5, 2016

U.S. Patent

20e - € @INpop

Tty

|

90g g @Inpop |
oo] L enpo

€ Ol

pow asied
e
| uinai
(,einpows ou,)uondaoxa 6o
;148 ‘uondaox3g 1deoxs
(Uredpouw)peo| = pow
An
(Uredpow)PONPED Jop

uoneolddy 8109

U.S. Patent Apr. 5, 2016 Sheet 4 of 5 US 9,304,762 B2

FIG. 4

U.S. Patent Apr. 5, 2016 Sheet 5 of 5 US 9,304,762 B2
500
502 ~_ Execute a computer

executable application

Y

Receive a request to load a
first module

508

4

Y

506

Is the first module
installed?

510

/

Add the first set of

functionalities to a set of
application functionalities

Handle an exception

l

v

512\

Continue executing
computer executable
application

v

514—\

Expose the set of application
functionalities

FIG. 5

v

US 9,304,762 B2

1
AUTOMATICALLY CUSTOMIZING A
COMPUTER-EXECUTABLE APPLICATION
AT RUNTIME

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application No. 61/771,737, entitled “AUTOMATI-
CALLY CUSTOMIZING A COMPUTER-EXECUTABLE
APPLICATION AT RUNTIME,” filed on Mar. 1, 2013,
which is incorporated herein by reference in its entirety.

TECHNICAL FIELD

The present technology pertains to customizing a com-
puter-executable application, and more specifically pertains
to customizing a computer-executable application at runtime
through modularization.

BACKGROUND

As software becomes more complex and specialized so do
the testing harnesses used to verifying the software’s func-
tionality. Often a testing harness includes some basic func-
tionality that is useful for testing a wide variety of applica-
tions. However, a testing harness can also include specialized
functionality, such as functionality specific to a particular
application, a class of applications, or even a particular devel-
oper. In these cases, the functionality of the testing harness
has to be extended or augmented. The customization can be
done through modularization and libraries, such as static or
dynamic link libraries.

A major drawback to the static and dynamic link library
approach is that the functionality provided in a library must be
known at compile or link time. That is, the particular func-
tionality that is to be included in the customized build of the
testing harness has to be specified prior to producing the
computer executable application. This places a heavy burden
on the developer of the testing harness when the developer is
committed to releasing customized versions of the testing
harness. For example, if a testing harness developer has cre-
ated a testing harness for testing internal software, the harness
may include functionality that is specific to the developer
and/or includes proprietary information, but the testing har-
ness may also include functionality that of interest to third-
party developers. If the testing harness developer wants to
release the testing harness to third-party developers, the test-
ing harness developer must sanitize the testing harness by
creating a separate third-party build that does not include the
proprietary functionality. This approach not only creates
extra overhead, but it also leaves open the possibility of acci-
dentally including the proprietary information.

SUMMARY

Additional features and advantages of the disclosure will
be set forth in the description which follows, and in part will
be obvious from the description, or can be learned by practice
of the herein disclosed principles. The features and advan-
tages of the disclosure can be realized and obtained by means
of the instruments and combinations particularly pointed out
in the appended claims. These and other features of the dis-
closure will become more fully apparent from the following
description and appended claims, or can be learned by the
practice of the principles set forth herein.

10

15

20

25

30

35

40

45

50

55

60

65

2

Disclosed are systems, methods, and non-transitory com-
puter-readable storage media for customizing a computer
executable application at runtime. The runtime customization
addresses limitations found in many applications that rely on
static or dynamic linked libraries or traditional runtime plu-
gins. With static or dynamic libraries, the functionality pro-
vided in a library must be known at compile or link time. That
is, the particular functionality that is to be included in the
customized build of the testing harness has to be specified
prior to producing the computer executable application. Fur-
thermore, there can be overhead associated with releasing
customized versions of an application because the various
libraries to be included must be specified at compile or link
time. Runtime plugins are an alternative to static or dynamic
libraries. However, runtime plugins are generally limited to
providing additional functions, and not additional language-
level features or constructs.

To address these limitations, the disclosed technology can
update the set of available functionalities, which can include
language-level features and/or constructs, at runtime without
needing to know which libraries or modules will be available
when the application is produced. To accomplish the runtime
customization, an application can be designed to include a
core application and one or more modules. The core applica-
tion caninclude a core set of functionalities. Each module can
also include a set of functionalities. At runtime, a request to
load a module can be triggered, such as by a module initial-
ization phase or a request for a feature in a module. In
response to the request the core application can attempt to
load the module. For example, the core application can look
for the module at a specific file path where the module would
be installed. If the module is present, i.e. installed, the load
will be successful and the core application can add the mod-
ule’s functionalities to the set of available application func-
tionalities. For example, the module can be parsed to identify
its set of functionalities. If the module is absent an exception
or other mechanism can be triggered. The exception can be
caught by the core application and execution can continue
without adding new functionalities to the set of available
functionalities.

At some point during the execution of the application, the
set of available functionalities can be exposed. For example,
if the set of available functionalities includes command line
options, a list of available command line options can be
display to a user of the application. The list can include
command line options from the core application and/or any
loaded module whose set of functionalities includes com-
mand line options. In another example, if the set of available
functionalities includes logging functionalities, the logging
functionalities can be activated and execution data for a test
application can be recorded. The recorded execution data can
include data items based on logging functionalities provided
by the core application and/or any loaded module whose set
of functionalities includes logging functionalities. In still
another example, if the set of available functionalities
includes event notifications, the event notifications can be
registered. The registered event notifications can include
event notifications from the core application and/or any
loaded module whose set of functionalities includes event
notifications. In a further example, if the set of available
functionalities can include exporting a locally scoped symbol
to a globally scoped symbol, the symbol can be globally
exposed using the symbol name specified in the module.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited
and other advantages and features of the disclosure can be

US 9,304,762 B2

3

obtained, a more particular description of the principles
briefly described above will be rendered by reference to spe-
cific embodiments thereof which are illustrated in the
appended drawings. Understanding that these drawings
depict only exemplary embodiments of the disclosure and are
not therefore to be considered to be limiting of its scope, the
principles herein are described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:

FIG. 1A and FIG. 1B illustrate exemplary system embodi-
ments;

FIG. 2 illustrates an exemplary computer executable appli-
cation split into modules;

FIG. 3 illustrates an exemplary runtime customizable com-
puter executable application;

FIG. 4 illustrates an exemplary sequence of module load
actions and corresponding set of available application func-
tionalities; and

FIG. 5 illustrates an exemplary method embodiment for
customizing an application at runtime.

DESCRIPTION

Various embodiments of the disclosure are discussed in
detail below. While specific implementations are discussed, it
should be understood that this is done for illustration pur-
poses only. A person skilled in the relevant art will recognize
that other components and configurations may be used with-
out parting from the spirit and scope of the disclosure.

The disclosed technology addresses the need in the art for
the ability customize the language-level features and con-
structs available in an application at runtime. The disclosure
first sets forth a discussion of a basic general purpose system
or computing device in FIG. 1A and FIG. 1B that can be
employed to practice the concepts disclosed herein before
returning to a more detailed description of customizing a
computer-executable application at runtime.

FIG. 1A and FIG. 1B illustrate exemplary possible system
embodiments. The more appropriate embodiment will be
apparent to those of ordinary skill in the art when practicing
the present technology. Persons of ordinary skill in the art will
also readily appreciate that other system embodiments are
possible.

FIG. 1A illustrates a conventional system bus computing
system architecture 100 wherein the components of the sys-
tem are in electrical communication with each other using a
bus 105. Exemplary system 100 includes a processing unit
(CPU or processor) 110 and a system bus 105 that couples
various system components including the system memory
115, such as read only memory (ROM) 120 and random
access memory (RAM) 125, to the processor 110. The system
100 can include a cache of high-speed memory connected
directly with, in close proximity to, or integrated as part of the
processor 110. The system 100 can copy data from the
memory 115 and/or the storage device 130 to the cache 112
for quick access by the processor 110. In this way, the cache
can provide a performance boost that avoids processor 110
delays while waiting for data. These and other modules can
control or be configured to control the processor 110 to per-
form various actions. Other system memory 115 may be
available for use as well. The memory 115 can include mul-
tiple different types of memory with different performance
characteristics. The processor 110 can include any general
purpose processor and a hardware module or software mod-
ule, such as module 1 132, module 2 134, and module 3 136
stored in storage device 130, configured to control the pro-
cessor 110 as well as a special-purpose processor where soft-

10

15

20

25

30

35

40

45

50

55

60

65

4

ware instructions are incorporated into the actual processor
design. The processor 110 may essentially be a completely
self-contained computing system, containing multiple cores
or processors, a bus, memory controller, cache, etc. A multi-
core processor may be symmetric or asymmetric.

To enable user interaction with the computing device 100,
aninput device 145 can represent any number of input mecha-
nisms, such as a microphone for speech, a touch-sensitive
screen for gesture or graphical input, keyboard, mouse,
motion input, speech and so forth. An output device 135 can
also be one or more of a number of output mechanisms known
to those of skill in the art. In some instances, multimodal
systems can enable a user to provide multiple types of input to
communicate with the computing device 100. The commu-
nications interface 140 can generally govern and manage the
user input and system output. There is no restriction on oper-
ating on any particular hardware arrangement and therefore
the basic features here may easily be substituted for improved
hardware or firmware arrangements as they are developed.

Storage device 130 is a non-volatile memory and can be a
hard disk or other types of computer readable media which
can store data that are accessible by a computer, such as
magnetic cassettes, flash memory cards, solid state memory
devices, digital versatile disks, cartridges, random access
memories (RAMs) 125, read only memory (ROM) 120, and
hybrids thereof.

The storage device 130 can include software modules 132,
134,136 for controlling the processor 110. Other hardware or
software modules are contemplated. The storage device 130
can be connected to the system bus 105. In one aspect, a
hardware module that performs a particular function can
include the software component stored in a computer-read-
able medium in connection with the necessary hardware com-
ponents, such as the processor 110, bus 105, display 135, and
so forth, to carry out the function.

FIG. 1B illustrates a computer system 150 having a chipset
architecture that can be used in executing the described
method and generating and displaying a graphical user inter-
face (GUI). Computer system 150 is an example of computer
hardware, software, and firmware that can be used to imple-
ment the disclosed technology. System 150 can include a
processor 155, representative of any number of physically
and/or logically distinct resources capable of executing soft-
ware, firmware, and hardware configured to perform identi-
fied computations. Processor 155 can communicate with a
chipset 160 that can control input to and output from proces-
sor 155. In this example, chipset 160 outputs information to
output 165, such as a display, and can read and write infor-
mation to storage device 170, which can include magnetic
media, and solid state media, for example. Chipset 160 can
also read data from and write data to RAM 175. A bridge 180
for interfacing with a variety of user interface components
185 can be provided for interfacing with chipset 160. Such
user interface components 185 can include a keyboard, a
microphone, touch detection and processing circuitry, a
pointing device, such as a mouse, and so on. In general, inputs
to system 150 can come from any of a variety of sources,
machine generated and/or human generated.

Chipset 160 can also interface with one or more commu-
nication interfaces 190 that can have different physical inter-
faces. Such communication interfaces can include interfaces
for wired and wireless local area networks, for broadband
wireless networks, as well as personal area networks. Some
applications of the methods for generating, displaying, and
using the GUI disclosed herein can include receiving ordered
datasets over the physical interface or be generated by the
machine itself by processor 155 analyzing data stored in

US 9,304,762 B2

5

storage 170 or 175. Further, the machine can receive inputs
from a user via user interface components 185 and execute
appropriate functions, such as browsing functions by inter-
preting these inputs using processor 155.

It can be appreciated that exemplary systems 100 and 150
can have more than one processor 110 or be part of a group or
cluster of computing devices networked together to provide
greater processing capability.

Having disclosed some components of a computing sys-
tem, the disclosure now turns to a discussion of automatically
customizing a computer executable application at runtime. A
person skilled in the relevant art will recognize that while the
disclosure frequently uses a testing harness application to
illustrate the disclosed technology, runtime customization
can be applied to any type of computer executable applica-
tion.

To enable automatic customization at runtime, a computer
executable application can be split into multiple modules. For
example, FIG. 2 illustrates an exemplary application split into
core application 202 and modules 204,,204,, . . ., 204,,. Core
application 202 can include a core set of application function-
ality including language-level features and constructs. The
core set of functionalities can be a minimum set of function-
ality required for the application to run or be useful if no other
modules are installed. Each of modules 204,, 204, .. ., 204,
can be designed to include a particular set of functionalities
that are specific to the module. For example, a module could
include logging functionality while another module could
include functionality for interacting with and manipulating
data provided by a particular database. In another example, a
module can export symbol names thus forcing the symbols in
to the global namespace, such as:

___app_export___={
‘do__something’: ‘mymodule_do_ something’
¥

In this case, the module exports mymodule_do_something so
that it is globally visible as do_something. In yet another
example, a module can define event notification handlers that
automatically extend the set of handlers invoked when the
named notification is sent, such as:

__app_events___={
‘app.runtime.load’: ‘plugin_ did_ load’,
‘app.runtime.quit’: ‘plugin_ will_quit’,

def plugin_did_ load(event, info, object=None):

assert event == ‘app.runtime.load’
def plugin_ will__quit(event, info, object=None):
assert event == ‘app.runtime.quit’

By splitting the application into multiple modules, only the
modules necessary to perform a desired task or provide a
feature and/or construct need to be installed. To illustrate an
exemplary usage scenario consider the following: an appli-
cation developer has developed a testing platform. The testing
platform includes a number of features that would be useful to
third parties, and thus the application developer wishes to
make the testing platform available for use by the third par-
ties. However, the application developer has a proprietary
database that is used as part of the testing platform. Because
the database is proprietary, the application developer may not
want to include the functionality, such as one or more event
notifications, associated with the database. By using the dis-

10

15

20

25

30

35

40

45

50

55

60

65

6

closed technology, the application developer can design the
testing platform such that the functionality for interacting
with and manipulating data provided by the proprietary data-
base can be isolated in a module. When the application devel-
oper distributes the testing platform to the third parties, the
application developer can exclude the database functionality
module.

The above exemplary usage scenario focused on an appli-
cation developer wishing to withhold proprietary functional-
ity. However, a user of the modularized application can also
leverage the modularized nature of the application. To illus-
trate a second exemplary usage scenario consider the follow-
ing: a developer has obtained a testing platform. The testing
platform includes a variety of functionality, a portion of
which is not needed by the developer. As long as the modules
are documented, the developer can elect to only install the
modules necessary to perform the developer’s desired tasks.
Other usage scenarios in which only a subset of the modules
are needed are also possible.

Once the core application and one or more modules are
installed, the application can be customized at runtime by
extending the set of available features and/or constructs. That
is, the one or more modules do not have to be linked with the
core application at compile or linking time, but can instead be
detected at runtime. When a module is detected, the function-
ality provided by the module can be registered and exposed as
part of the executing application. FIG. 3 illustrates an exem-
plary runtime customizable application. The exemplary runt-
ime customizable application is composed of core application
302 and three modules 304, 306, and 308. To customize the
available functionality at runtime, core application 302 can
include a module loading function, such as loadMod 310.
During execution of the application, function loadMod 310
can attempt to load a particular module. If the module is
absent, function loadMod 310 can catch an exception and
possibly log it. By catching the exception, the application can
continue executing using the functionality already recog-
nized. If the module is presented, e.g. has been installed,
function loadMod 310 can parse the module to identify the
functionality provided by the module, and add the module’s
functionality to the set of available functionalities. For
example, core application 302 can call function loadMod 310
three times, once for each of modules 304, 306, and 308.
Modules 304 and 308 are currently installed, so when func-
tion loadMod 310 is called the functionality in modules 304
and 308 can be added to the set of currently available func-
tionalities. However, module 306 is not installed. Therefore,
when function loadMod 310 is called for module 306, func-
tion loadMod 310 will catch the exception and the application
will continue executing without adding new functionality to
set the available functionalities.

Calling function loadMod 310 can be triggered in a number
of ways. For example, the core application can include an
initialization phase that attempts to register all possible mod-
ules. In another example, the core application can register the
modules at various points during execution, such as when a
particular feature is requested. In response to the feature
request, core application can attempt to register the module
that includes the feature.

In some cases, functionality can be loaded from a module
and can later become unavailable. The customized applica-
tion can be configured to handle unavailable functionality in
a similar manner as unavailable modules. That is, the appli-
cation can be configured to try to use the functionality. If the
functionality is absent, an exception can be thrown and
caught, thus allowing the application to continue executing.

US 9,304,762 B2

7

For example, the following pseudo-code example illustrates
how the application can be configured to handle unavailable
functionality:

try:
try to use functionality from the set of available functionalities
call__added__function();
except NameError:
expected functionality in not available
pass

FIG. 4 illustrates an exemplary sequence of module load
actions and corresponding set of available application func-
tionalities. The exemplary sequence is illustrated using core
application 302 and modules 304, 306, and 308 from FIG. 3.
Prior to loading any modules, the set of available application
functionalities includes just the core set of functionalities.
After calling function loadMod 310 with module 304, the set
of available application functionality now also includes the
functionalities from module 304. After calling function load-
Mod 310 with module 306, the set of available application
functionalities does not change because module 306 is not
installed. After calling function loadMod 310 with module
308, the set of available application functionalities is
expanded to also include the functionalities from module 308.
In summary after attempting to load all three of modules 304,
306, and 308, the set of available application functionalities
includes the core functionalities, and the functionalities from
modules 304 and 308.

FIG. 5 is a flowchart illustrating an exemplary method 500
for automatically customizing an application at runtime, such
as a testing harness or testing platform application. For the
sake of clarity, this method is discussed in terms of an exem-
plary computing system such as is show in FIG. 1. Although
specific steps are show in FIG. 5, in other embodiments a
method can have more or less steps than shown.

The automatic customization process begins when the
computing system executes the customizable application
(502). The customizable application can be any type of com-
puter executable application that is designed to include a core
application with a set of core functionalities and at least one
module with a set of additional functionalities. The additional
functionalities can include language-level features and/or
constructs.

At some point during the execution of the application, a
request to load a first module can be triggered (504). The
request can be triggered in a variety of ways. For example, the
core application can include an initialization phase that
attempts to register all possible modules. In another example,
the core application can register the modules at various points
during execution, such as when a particular feature is
requested. In response to the feature request, core application
can attempt to register the module that includes the feature.

In response to the request, the system can check if the first
module is installed (506). If the first module is installed, a first
set of functionalities from the first module can be added to the
set of available functionalities for the application (508). In
some cases, the first set of functionalities can be identified by
parsing the first module. The first set of functionalities can
include a variety of application functionality, such as com-
mand line options, logging features, event notifications, sym-
bol exporting, and/or any other functionality applicable to the
application. If the first module is absent, e.g. not installed on
the system, an exception can be thrown, which can be caught
by the application (510).

10

15

20

25

30

35

40

45

50

55

60

65

8

After updating the set of available functionalities or han-
dling the exception, the system can continue executing the
application (512). In some cases, the continued execution can
include exposing the set of available application functional-
ities (514). For example, if the first set of functionalities
includes command line options, exposing the set of available
application functionalities can include displaying a list of the
command line options currently available. The list can
include the command line options from the first set of func-
tionalities, as well as command line options from the core
application and/or other modules. In some cases, the display-
ing the list of command line options can occur in response to
a request to display command line options. For example,
during execution of the application, a user can enter a com-
mand to display the currently available command line
options.

In another example of exposing the set of available appli-
cation functionalities, if the first set of functionalities includes
logging functionality, exposing can include activating a log-
ging feature and capturing execution data for a test applica-
tion. In this case, at least one execution data item from the
execution data can be based on a logging functionality in the
first set of functionalities. The recorded execution data can
also include data items based on a logging functionality in the
core application and/or other modules.

In still another example of exposing the set of available
application functionalities, if the first set of functionalities
includes event notifications, exposing can include registering
to receive at least one event notification defined in the set of
available application functionalities. In some cases, register-
ing to receive at least one event notification can also include
registering to receive event notifications from the core appli-
cation and/or other modules.

In a further example of exposing the set of available appli-
cation functionalities, if the set of available functionalities
includes exporting a locally scoped symbol to a globally
scoped symbol, exposing can include forcing the symbol in to
the global namespace.

After completing step 514, the computing system can
resume previous processing, which can include repeating
method 500.

For clarity of explanation, in some instances the present
technology may be presented as including individual func-
tional blocks including functional blocks comprising devices,
device components, steps or routines in a method embodied
in software, or combinations of hardware and software.

In some embodiments the computer-readable storage
devices, mediums, and memories can include a cable or wire-
less signal containing a bit stream and the like. However,
when mentioned, non-transitory computer-readable storage
media expressly exclude media such as energy, carrier sig-
nals, electromagnetic waves, and signals per se.

Methods according to the above-described examples can
be implemented using computer-executable instructions that
are stored or otherwise available from computer readable
media. Such instructions can comprise, for example, instruc-
tions and data which cause or otherwise configure a general
purpose computer, special purpose computer, or special pur-
pose processing device to perform a certain function or group
of functions. Portions of computer resources used can be
accessible over a network. The computer executable instruc-
tions may be, for example, binaries, intermediate format
instructions such as assembly language, firmware, or source
code. Examples of computer-readable media that may be
used to store instructions, information used, and/or informa-
tion created during methods according to described examples

US 9,304,762 B2

9

include magnetic or optical disks, flash memory, USB devices
provided with non-volatile memory, networked storage
devices, and so on.

Devices implementing methods according to these disclo-
sures can comprise hardware, firmware and/or software, and
can take any of a variety of form factors. Typical examples of
such form factors include laptops, smart phones, small form
factor personal computers, personal digital assistants, and so
on. Functionality described herein also can be embodied in
peripherals or add-in cards. Such functionality can also be
implemented on a circuit board among different chips or
different processes executing in a single device, by way of
further example.

The instructions, media for conveying such instructions,
computing resources for executing them, and other structures
for supporting such computing resources are means for pro-
viding the functions described in these disclosures.

Although a variety of examples and other information was
used to explain aspects within the scope of the appended
claims, no limitation of the claims should be implied based on
particular features or arrangements in such examples, as one
of'ordinary skill would be able to use these examples to derive
a wide variety of implementations. Further and although
some subject matter may have been described in language
specific to examples of structural features and/or method
steps, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to these
described features or acts. For example, such functionality
can be distributed differently or performed in components
other than those identified herein. Rather, the described fea-
tures and steps are disclosed as examples of components of
systems and methods within the scope of the appended
claims.

The invention claimed is:

1. A computer-implemented method of automatically cus-
tomizing a computer executable application, the method
comprising:

executing, via a processor, the computer executable appli-

cation, wherein the computer executable application
includes a set of application functionalities;
during execution, receiving a request to load a first set of
software instructions, the first set of software instruc-
tions including a first set of functionalities comprising at
least one of a language-level feature or a language-level
construct, with the request being triggered by the com-
puter executable application;
in response to the request to load, determining whether the
first set of software instructions is installed based on
whether the first set of software instructions is present at
a specific file path;

continuing the execution with the set of application func-
tionalities if the first set of software instructions is not
installed;

loading the first set of software instructions if the first set of

software instructions is installed; and

parsing the loaded first set of software instructions to iden-

tify the first set of functionalities in response to deter-
mining that the first set of software instructions is
loaded, wherein the first set of functionalities identified
are added to the set of application functionalities.

2. The computer-implemented method of claim 1, wherein
the first set of functionalities includes at least one of com-
mand line parameters, event notifications, logging function-
ality, or symbol exports.

3. The computer-implemented method of claim 1 further
comprising:

5

10

15

20

25

30

35

40

45

50

55

60

65

10

in response to determining that a functionality in the set of
application functionalities is absent, handling an excep-
tion and continuing execution of the computer execut-
able application.

4. The computer-implemented method of claim 1 further

comprising:
exposing the set of application functionalities including the
first set of functionalities.
5. The computer-implemented method of claim 4, wherein
the first set of functionalities includes command line options,
and wherein exposing the set of application functionalities
further comprises:
displaying a list of command line options available in the
computer executable application, the list of command
line options including command line parameters in the
first set of functionalities.
6. The computer-implemented method of claim 5, wherein
the displaying occurs in response to receiving a request to
display the list of command line options available in the
computer executable application.
7. The computer-implemented method of claim 1, wherein
the trigger is at least one of an initialization phase or a request
for a feature in the first module.
8. A manufacture comprising:
a processor;
a computer-executable program stored on a non-transitory
computer-readable storage medium which, when
executed by a computing device, causes the computing
device to perform a method comprising:
executing a computer executable application including a
set of application functionalities;

during execution, receiving a request to load a first set of
software instructions, the first set of software instruc-
tions including a first set of functionalities comprising
at least one of a language-level feature or a language-
level construct, with the request being triggered by the
computer executable application;

in response to the request to load, determining whether
the first set of software instructions is installed based
on whether the first set of software instructions is
present at a specific file path;

continuing the execution with the set of application
functionalities if the first set of software instructions
is not installed;

loading the first set of software instructions if the first set
of software instructions is installed; and

parsing the loaded first set of software instructions to
identify the first set of functionalities in response to
determining that the first set of software instructions
is installed, wherein the first set of functionalities
identified are added to the set of application function-
alities.

9. The manufacture of claim 8, the method further com-
prising:

in response to determining that a functionality in the set of
application functionalities is absent, handling an excep-
tion and continuing execution of the computer execut-
able application.

10. The manufacture of claim 8 further comprising:

exposing the set of application functionalities including the
first set of functionalities.

11. The manufacture of claim 10, wherein the first set of
functionalities includes logging functionality, and wherein
exposing the set of application functionalities further com-
prises:

executing a logging feature to record execution data for a
test application, wherein at least one execution data item

US 9,304,762 B2

11

from the recorded execution data is based on a logging
functionality in the first set of functionalities.

12. The manufacture of claim 8, wherein the receiving the
request to load the first set of software instructions is triggered
by a request for a feature in the first set of software instruc-
tions.

13. The manufacture of claim 8 further comprising:

during execution, receiving a request to load a second set of
software instructions, the second set of software instruc-
tions including a second set of functionalities compris-
ing at least one of a language-level feature or a language-
level construct; and

in response to determining that the second set of software
instructions is installed, adding the second set of func-
tionalities to the set of application functionalities.

14. The manufacture of claim 13, wherein the receiving the
request to load the second set of software instructions is
triggered by a request for a feature in the second set of soft-
ware instructions.

15. The manufacture of claim 8, wherein the trigger is at
least one of an initialization phase or a request for a feature in
the first set of software instructions.

16. A system for automatically customizing a computer
executable application, the system comprising:

a processor;

a first set of software instructions configured to control the
processor to execute the computer executable applica-
tion, wherein the computer executable application
includes a set of application functionalities;

a second set of software instructions configured to control
the processor to receive a request to load a first compo-
nent including a first set of functionalities;

athird set of software instructions configured to control the
processor to determine, in response to the request to

20

25

load, whether the first set of software instructions is 35

installed based on whether the first set of software
instructions is present at a specific file path, wherein the
computer executable application continues to execute
with the set of application functionalities if the first set of
software instructions is not installed;

12

a fourth set of software instructions configured to control
the processor to load a first set of software instructions
during execution of the computer executable application
if the first set of software instructions is installed,
wherein loading the first set of software instructions is
triggered by the computer executable application;

a fifth set of software instructions configured to control the
processor to parse the loaded first set of software instruc-
tions to identify the first set of functionalities comprising
at least one of a language-level feature or a language-
level construct; and

a sixth set of software instructions configure to control the
processor to add the identified first set of functionalities
to the set of application functionalities, wherein adding
the functionalities occurs in response to determining that
the first set of software instructions is installed.

17. The system of claim 16 further comprising:

a seventh set of software instructions configured to control
the processor to expose the set of application function-
alities including the first set of functionalities.

18. The system of claim 17, wherein the first set of func-
tionalities includes event notifications, and wherein exposing
the set of application functionalities further comprises:

registering to receive at least one event notification defined
in the set of application functionalities.

19. The system of claim 17, wherein the first set of func-
tionalities includes symbol exports, and wherein exposing the
set of application functionalities further comprises:

forcing the symbol in to the global namespace.

20. The system of claim 16, wherein loading the first com-
ponent is triggered by at least one of an initialization phase or
a request for a feature in the first component.

21. The system of claim 16 further comprising:

in response to determining that a functionality in the set of
application functionalities is absent, handling an excep-
tion and continuing execution of the computer execut-
able application.

#* #* #* #* #*

